Skip to content

Neuroscience and Neurobiology

Fred Wolf Fred Wolf
Associate Professor, Molecular & Cell Biology

The Wolf lab studies the genetic and neural circuit mechanisms for coding simple behaviors, including motivated seeking and plasticity driven by addictive drugs. We also study the regulation of DNA damage repair.

Publications:

Mef2 induction of the immediate early gene Hr38/Nr4a is terminated by Sirt1 to promote ethanol tolerance. Adhikari P, Orozco D, Randhawa H, Wolf FW. Genes Brain Behav. 2019 Mar;18(3):e12486. doi: 10.1111/gbb.12486. Epub 2018 May 28.

Satiation state-dependent dopaminergic control of foraging in Drosophila. Landayan D, Feldman DS, Wolf FW. Sci Rep. 2018 Apr 10;8(1):5777. doi: 10.1038/s41598-018-24217-1.

Perineurial Barrier Glia Physically Respond to Alcohol in an Akap200-Dependent Manner to Promote Tolerance. Parkhurst SJ, Adhikari P, Navarrete JS, Legendre A, Manansala M, Wolf FW. Cell Rep. 2018 Feb 13;22(7):1647-1656. doi: 10.1016/j.celrep.2018.01.049.

fwolf@ucmerced.edu
(415) 370-1132
Full Profile
Xuecai Ge Xuecai Ge
Associate Professor, Molecular & Cell Biology

We study mechanisms of cell signaling in the developing brain, focusing on primary cilium, the antenna-like organelle that integrate signaling pathways in the cell. Our research aims to shed light on how signaling errors lead to brain developmental disorders.

Publications:

Ge X*, Yang H, Bednarek MA, Galon-Tilleman H, Chen P, Chen M, Lichtman JS, Wang Y, Dalmas O, Yin Y, Tian H, Jermutus L, Grimsby J, Rondinone, CM, Konkar A, Kaplan, DD. (2018) LEAP2 is an endogenous Antagonist of the Ghrelin Receptor. Cell Metabolism. 27(2): 461-469. doi: 10.1016/j.cmet.2017.10.01 *Author of correspondence.

Ge X, Milenkovic L, Suyama K, Hartl T, Winan A, Meyer T, Scott MP. (2015) Integration of Neuropilin with Hedgehog signal transduction through control of Phosphodiesterase 4 and protein kinase A. eLife. 4:e07068. DOI: 10.7554/eLife.07068.

Ge X, Frank CL, Calderon de Anda F, Tsai LH. (2010) Hook3 and PCM1 regulate neurogenesis by controlling the centrosome dynamics and interkinetic nuclear migration. Neuron 65:191-203

xge2@ucmerced.edu
Full Profile
Ramen Saha Ramen Saha
Associate Professor, Molecular & Cell Biology

Epigenetic mechanisms of neuronal gene transcription and their role in mental health.

rsaha3@ucmerced.edu
(209) 228-2425
Full Profile
Michael D. Cleary Michael D. Cleary
Professor, Molecular & Cell Biology

Professor Cleary is interested in how complex tissues develop from relatively small populations of stem cells. Nervous system development in the fruit fly, Drosophila melanogaster, provides an excellent model system for studying this process. His lab focuses on how Drosophila neural stem cells, called neuroblasts, which produce the diversity of cell types found in the nervous system. His primary aim is to understand:

  • How cell fate decisions are temporally regulated, so that distinct cell types are made at specific times during development
  • How mitotic activity is regulated, so that neuroblasts stop and start dividing at the proper time
  • How cell fate information is passed from a neuroblast to its progeny and the role of chromatin remodeling factors and other transcription factors in this process

His research team uses the many powerful molecular and genetic techniques available for Drosophila research to address these questions, with the ultimate goal of identifying mechanisms that are conserved in human stem cells.

mcleary4@ucmerced.edu
(209) 228-4554
Full Profile